3.1631 \(\int \frac{\sqrt [4]{c+d x}}{\sqrt{a+b x}} \, dx\)

Optimal. Leaf size=111 \[ \frac{4 (b c-a d)^{5/4} \sqrt{-\frac{d (a+b x)}{b c-a d}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt [4]{b} \sqrt [4]{c+d x}}{\sqrt [4]{b c-a d}}\right ),-1\right )}{3 b^{5/4} d \sqrt{a+b x}}+\frac{4 \sqrt{a+b x} \sqrt [4]{c+d x}}{3 b} \]

[Out]

(4*Sqrt[a + b*x]*(c + d*x)^(1/4))/(3*b) + (4*(b*c - a*d)^(5/4)*Sqrt[-((d*(a + b*x))/(b*c - a*d))]*EllipticF[Ar
cSin[(b^(1/4)*(c + d*x)^(1/4))/(b*c - a*d)^(1/4)], -1])/(3*b^(5/4)*d*Sqrt[a + b*x])

________________________________________________________________________________________

Rubi [A]  time = 0.0673849, antiderivative size = 111, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.21, Rules used = {50, 63, 224, 221} \[ \frac{4 (b c-a d)^{5/4} \sqrt{-\frac{d (a+b x)}{b c-a d}} F\left (\left .\sin ^{-1}\left (\frac{\sqrt [4]{b} \sqrt [4]{c+d x}}{\sqrt [4]{b c-a d}}\right )\right |-1\right )}{3 b^{5/4} d \sqrt{a+b x}}+\frac{4 \sqrt{a+b x} \sqrt [4]{c+d x}}{3 b} \]

Antiderivative was successfully verified.

[In]

Int[(c + d*x)^(1/4)/Sqrt[a + b*x],x]

[Out]

(4*Sqrt[a + b*x]*(c + d*x)^(1/4))/(3*b) + (4*(b*c - a*d)^(5/4)*Sqrt[-((d*(a + b*x))/(b*c - a*d))]*EllipticF[Ar
cSin[(b^(1/4)*(c + d*x)^(1/4))/(b*c - a*d)^(1/4)], -1])/(3*b^(5/4)*d*Sqrt[a + b*x])

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 224

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Dist[Sqrt[1 + (b*x^4)/a]/Sqrt[a + b*x^4], Int[1/Sqrt[1 + (b*x^4)
/a], x], x] /; FreeQ[{a, b}, x] && NegQ[b/a] &&  !GtQ[a, 0]

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[EllipticF[ArcSin[(Rt[-b, 4]*x)/Rt[a, 4]], -1]/(Rt[a, 4]*Rt[
-b, 4]), x] /; FreeQ[{a, b}, x] && NegQ[b/a] && GtQ[a, 0]

Rubi steps

\begin{align*} \int \frac{\sqrt [4]{c+d x}}{\sqrt{a+b x}} \, dx &=\frac{4 \sqrt{a+b x} \sqrt [4]{c+d x}}{3 b}+\frac{(b c-a d) \int \frac{1}{\sqrt{a+b x} (c+d x)^{3/4}} \, dx}{3 b}\\ &=\frac{4 \sqrt{a+b x} \sqrt [4]{c+d x}}{3 b}+\frac{(4 (b c-a d)) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a-\frac{b c}{d}+\frac{b x^4}{d}}} \, dx,x,\sqrt [4]{c+d x}\right )}{3 b d}\\ &=\frac{4 \sqrt{a+b x} \sqrt [4]{c+d x}}{3 b}+\frac{\left (4 (b c-a d) \sqrt{\frac{d (a+b x)}{-b c+a d}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1+\frac{b x^4}{\left (a-\frac{b c}{d}\right ) d}}} \, dx,x,\sqrt [4]{c+d x}\right )}{3 b d \sqrt{a+b x}}\\ &=\frac{4 \sqrt{a+b x} \sqrt [4]{c+d x}}{3 b}+\frac{4 (b c-a d)^{5/4} \sqrt{-\frac{d (a+b x)}{b c-a d}} F\left (\left .\sin ^{-1}\left (\frac{\sqrt [4]{b} \sqrt [4]{c+d x}}{\sqrt [4]{b c-a d}}\right )\right |-1\right )}{3 b^{5/4} d \sqrt{a+b x}}\\ \end{align*}

Mathematica [C]  time = 0.0228263, size = 71, normalized size = 0.64 \[ \frac{2 \sqrt{a+b x} \sqrt [4]{c+d x} \, _2F_1\left (-\frac{1}{4},\frac{1}{2};\frac{3}{2};\frac{d (a+b x)}{a d-b c}\right )}{b \sqrt [4]{\frac{b (c+d x)}{b c-a d}}} \]

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x)^(1/4)/Sqrt[a + b*x],x]

[Out]

(2*Sqrt[a + b*x]*(c + d*x)^(1/4)*Hypergeometric2F1[-1/4, 1/2, 3/2, (d*(a + b*x))/(-(b*c) + a*d)])/(b*((b*(c +
d*x))/(b*c - a*d))^(1/4))

________________________________________________________________________________________

Maple [F]  time = 0.016, size = 0, normalized size = 0. \begin{align*} \int{\sqrt [4]{dx+c}{\frac{1}{\sqrt{bx+a}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x+c)^(1/4)/(b*x+a)^(1/2),x)

[Out]

int((d*x+c)^(1/4)/(b*x+a)^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (d x + c\right )}^{\frac{1}{4}}}{\sqrt{b x + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(1/4)/(b*x+a)^(1/2),x, algorithm="maxima")

[Out]

integrate((d*x + c)^(1/4)/sqrt(b*x + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (d x + c\right )}^{\frac{1}{4}}}{\sqrt{b x + a}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(1/4)/(b*x+a)^(1/2),x, algorithm="fricas")

[Out]

integral((d*x + c)^(1/4)/sqrt(b*x + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt [4]{c + d x}}{\sqrt{a + b x}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)**(1/4)/(b*x+a)**(1/2),x)

[Out]

Integral((c + d*x)**(1/4)/sqrt(a + b*x), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (d x + c\right )}^{\frac{1}{4}}}{\sqrt{b x + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(1/4)/(b*x+a)^(1/2),x, algorithm="giac")

[Out]

integrate((d*x + c)^(1/4)/sqrt(b*x + a), x)